Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora.

Identifieur interne : 000C69 ( Main/Exploration ); précédent : 000C68; suivant : 000C70

Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora.

Auteurs : Stephanie R. Bollmann [États-Unis] ; Yufeng Fang [États-Unis] ; Caroline M. Press [États-Unis] ; Brett M. Tyler [États-Unis] ; Niklaus J. Grünwald [États-Unis]

Source :

RBID : pubmed:27014308

Abstract

Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed.

DOI: 10.3389/fpls.2016.00284
PubMed: 27014308
PubMed Central: PMC4791657


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora.</title>
<author>
<name sortKey="Bollmann, Stephanie R" sort="Bollmann, Stephanie R" uniqKey="Bollmann S" first="Stephanie R" last="Bollmann">Stephanie R. Bollmann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Horticultural Crop Research Unit, USDA-Agricultural Research Service Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Horticultural Crop Research Unit, USDA-Agricultural Research Service Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fang, Yufeng" sort="Fang, Yufeng" uniqKey="Fang Y" first="Yufeng" last="Fang">Yufeng Fang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA; Interdisciplinary Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia TechBlacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA; Interdisciplinary Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia TechBlacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Press, Caroline M" sort="Press, Caroline M" uniqKey="Press C" first="Caroline M" last="Press">Caroline M. Press</name>
<affiliation wicri:level="2">
<nlm:affiliation>Horticultural Crop Research Unit, USDA-Agricultural Research Service Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Horticultural Crop Research Unit, USDA-Agricultural Research Service Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State University Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State University Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grunwald, Niklaus J" sort="Grunwald, Niklaus J" uniqKey="Grunwald N" first="Niklaus J" last="Grünwald">Niklaus J. Grünwald</name>
<affiliation wicri:level="2">
<nlm:affiliation>Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA; Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA; Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27014308</idno>
<idno type="pmid">27014308</idno>
<idno type="doi">10.3389/fpls.2016.00284</idno>
<idno type="pmc">PMC4791657</idno>
<idno type="wicri:Area/Main/Corpus">000C40</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C40</idno>
<idno type="wicri:Area/Main/Curation">000C40</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C40</idno>
<idno type="wicri:Area/Main/Exploration">000C40</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora.</title>
<author>
<name sortKey="Bollmann, Stephanie R" sort="Bollmann, Stephanie R" uniqKey="Bollmann S" first="Stephanie R" last="Bollmann">Stephanie R. Bollmann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Horticultural Crop Research Unit, USDA-Agricultural Research Service Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Horticultural Crop Research Unit, USDA-Agricultural Research Service Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fang, Yufeng" sort="Fang, Yufeng" uniqKey="Fang Y" first="Yufeng" last="Fang">Yufeng Fang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA; Interdisciplinary Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia TechBlacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA; Interdisciplinary Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia TechBlacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Press, Caroline M" sort="Press, Caroline M" uniqKey="Press C" first="Caroline M" last="Press">Caroline M. Press</name>
<affiliation wicri:level="2">
<nlm:affiliation>Horticultural Crop Research Unit, USDA-Agricultural Research Service Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Horticultural Crop Research Unit, USDA-Agricultural Research Service Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State University Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State University Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grunwald, Niklaus J" sort="Grunwald, Niklaus J" uniqKey="Grunwald N" first="Niklaus J" last="Grünwald">Niklaus J. Grünwald</name>
<affiliation wicri:level="2">
<nlm:affiliation>Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA; Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA; Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27014308</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora.</ArticleTitle>
<Pagination>
<MedlinePgn>284</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2016.00284</ELocationID>
<Abstract>
<AbstractText>Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bollmann</LastName>
<ForeName>Stephanie R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Horticultural Crop Research Unit, USDA-Agricultural Research Service Corvallis, OR, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Yufeng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA; Interdisciplinary Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia TechBlacksburg, VA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Press</LastName>
<ForeName>Caroline M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Horticultural Crop Research Unit, USDA-Agricultural Research Service Corvallis, OR, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tyler</LastName>
<ForeName>Brett M</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State University Corvallis, OR, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grünwald</LastName>
<ForeName>Niklaus J</ForeName>
<Initials>NJ</Initials>
<AffiliationInfo>
<Affiliation>Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA; Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>03</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Phytophthora</Keyword>
<Keyword MajorTopicYN="N">RDR</Keyword>
<Keyword MajorTopicYN="N">dicer</Keyword>
<Keyword MajorTopicYN="N">evolution</Keyword>
<Keyword MajorTopicYN="N">small RNA</Keyword>
<Keyword MajorTopicYN="N">stramenopile</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>01</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27014308</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2016.00284</ArticleId>
<ArticleId IdType="pmc">PMC4791657</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Genet. 2013 Jun;9(6):e1003272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 13;311(5758):195-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16410517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Nov;9(6):729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2007 Jul;14(7):604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(20):6714-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 21;8(10):e77181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Feb;10(2):94-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19148191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2002 Dec 1;115(Pt 23):4565-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12415001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 25;425(6956):415-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14508493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 15;28(12):1647-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Mar 16;404(6775):293-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10749213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Nov 10;33(19):6405-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16282589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Mar;16(3):206-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e22870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21857960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Oct 15;99(2):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10535731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1572-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19920124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Oct;12(8):772-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Mar 31;101(1):25-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10778853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1999 Mar;3(3):339-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jul 1;16(13):1616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Jun 25;38(6):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20417140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Feb;13(2):445-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11854403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1995 Nov;28(6):571-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8593689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Dec;37(12):1356-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16273107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jan;8(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 May;2(5):E104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Dec 3;75(5):843-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8252621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2004 Mar;26(6):509-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15127793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2003 Apr;28(4):196-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12713903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2006 Dec;12(12):2063-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17053086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2001 Jul 10;11(13):1017-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11470406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Dec;10(6):1417-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2006 Aug;50(2):81-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16691418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1549-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Apr 25;268(1):78-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9149143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2015 Sep 21;212(10):1679-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26371188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Jan;17 (1):127-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26507366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Nov;28(11):1198-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26196322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2009 Aug;9(3):277-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19221817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Mar;5(3):e57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17298187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 May 27;6(5):e1000920</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20523899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 May 26;101(5):543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10850496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jul 21;313(5785):320-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(12):4092-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20200046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Dec 3;75(5):855-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8252622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Nov 15;22(22):2711-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16954143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Sep 3;12(17):1484-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12225663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 29;286(5441):950-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Apr 1;308(5718):118-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15692015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e51399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23272103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Aug 23;15(16):1494-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Oct 23;326(5952):544-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19745116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Nov;36(20):6511-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18927112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Aug;62(8):2811-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Nov;7(11):487-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Oct;2(5):971-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 May;9(3):385-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Jun 30;12:337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21718527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 May 1;30(9):e36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 Nov 1;447(1):29-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19616606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Apr;2(2):191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Aug;17(8):754-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11524383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Jun;26(6):1333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19276153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Feb;37(3):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19103667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Jan;24(1):34-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10087920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(7):R73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12984-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16129836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Jul;6(7):1200-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 May;123(1):243-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Jul;27(7):1698-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20194427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jan 18;409(6818):363-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11201747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 May;56(3):638-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15819621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Oct 13;12:503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2015 Jun 18;125(25):3937-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25778535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2004 Feb;5(2):189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Aug;45(8):1197-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599326</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Bollmann, Stephanie R" sort="Bollmann, Stephanie R" uniqKey="Bollmann S" first="Stephanie R" last="Bollmann">Stephanie R. Bollmann</name>
</region>
<name sortKey="Fang, Yufeng" sort="Fang, Yufeng" uniqKey="Fang Y" first="Yufeng" last="Fang">Yufeng Fang</name>
<name sortKey="Grunwald, Niklaus J" sort="Grunwald, Niklaus J" uniqKey="Grunwald N" first="Niklaus J" last="Grünwald">Niklaus J. Grünwald</name>
<name sortKey="Press, Caroline M" sort="Press, Caroline M" uniqKey="Press C" first="Caroline M" last="Press">Caroline M. Press</name>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27014308
   |texte=   Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27014308" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024